数学瑰宝《梦溪笔谈》
宋代是中国古代数学最辉煌的时期之一。北宋大科学家沈括的名著
《梦溪笔谈》中,有10多条有关数学的讨论,内容既广且深,堪称我国
古代数学的瑰宝。
沈括最重要的数学探讨是隙积术和会圆术。隙积术在我国数学史上
开辟了高阶等差级数求和的研究领域,对高阶等差级数的研究始自沈
括。
在《梦溪笔谈》中,沈括还应用组合数学法计算得出围棋可能的局数
是3361种,并提出用数量级概念来表示大数3361的方法。沈括还在书
中记载了一些运筹思想,如将暴涨的汴水引向古城废墟来抢救河堤的
塌陷,以及用挖路成河、取土、运输,最后又将建筑垃圾填河成路的方
法来修复皇宫等。沈括对数的本质的认识也很深刻,指出:“大凡物有
定形,形有真数。”显然他否定了数的神秘性,而肯定了数与物的关系。
他还指出:“然算术不患多学,见简即用,见繁即变,乃为通术也。”